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Abstract:  The management of a water reservoir can be improved thanks to the use of stochastic dynamic
programming (SDP) to generate management policies which are efficient with respect 1o the management
objectives {{lood protection, water supply for irrigation and hydropower generation, respect of minimum envi-
ronmental flows, etc.). The improvement in efficiency is cven more remarkable when the problem involves a
reservoir netwark, that is a set of reservoirs which are interconnected. Unfortunately, SDP is affected by the
“curse of dimensionality” and computing time and computer memory occupation can guickly become unbear-
able. Neuro-dynamic programming (NDP) can sensibly reduce the demands on computer time and memory
thanks to the approximation of Bellman functions with Artificial Neural Networks (ANNs). In this paper an
application of neuro-dynamic programming to the probiem of the management of reservoir networks is pre-
sented,

Keywords: Water Reservoir Management; Stochastic Dynamic Programming; Neurc-dynamic Programming

cretisation grid of the search space with a lower

1 INTRODUCTION

The management of water quantity has considera-
bly profited from the advent of computers and the
appiication of Operations Research and Systems
Analysts methodologies to solve the problem of
finding the optimal release of water in order to
satisfy demand for hydropower gencration, agri-
cultural and wrban use, and to satisfy environ-
mental constraints.  One of the most successful
techniques has been Dynamic Programming [Bell-
man and Dreyfus, 1939} and various authors have
applied the methodology to water mamagement.
Unfortunately, from the very beginning it was ap-
parent that an increase of the dimensionality of the
problem, i.e. an addition of reservoirs, caused an
exponential increase in the time required to find a
solutien. This problem was named the “curse of
dimensionality” by Bellman and preventad the ap-
plication of the methodology to real world water
systems consisting of more than two or three reser-
voirs.  Recently, Bertsekas and Tsitsiklis [1996]
have proposed a methodology, named newro-
dynamic programming, based on the functional
approximation of the Bellman function using Arti-
ficial Meural Networks (ANNs). The ANN-based
approximatien can be obtained exploring the dis-

resolution, thus reducing the time required to solve
one step of the Bellman equation.

In this paper we present an application of (his
metiodology to the solution of the problem of op-
timal water management. We have implemented
an exlension to the Successive Approximation Al-
gorithm which has already been adapted to the case
of reservoir management policy design [Piccardi
and Soncini-Sessa, 1991]. We finally Teport some
prelimunary experimental tests

Z. THE PROBLEM

Since the first pioneering works by Maas [1962],
the problem of the management of a regulated lake
has been represenied with a feedback control
scheme with feedforward compensation (Figure 1).
The contrel policy, which is the key element of the
scheme, returns the volume u 1o be refeased from
the reservoir, once the current storage value 5, is
known. When feedforward compensation is pres-
ent the pelicy also depends upon the vector i
which represents the meteorological information



and the catchment state. Both these syslems are
affected by a stochastic disturbance &,
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Figure 1. Closed loop conirol scheme with feed-
forward compensation.

According to the chosen modelling representation,
the components of the vector [, can be, e.g., the

piczometric head of groundwater, the reservoir
inflow during the 24 hours preceding the release
decision (a_,); the stochastic disturbance £ can be,
e.g., the atmospheric pressure, the solar radiation,
the rainfall.

The control policy can be determined as the solu-
tion of an optimal control problem defined as fol-

lows. The reservoir is represented by the mass
conservation equation:

()

; is the actual release in the interval

Spe) =5 ) = (S0 4 Ap)

whete 1,
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The meteorclogical system and the catchment are
the most difficult components 1o model, because of
the compiexity of the meteorological and hydro-

logical processes, Very often only the catchment is
considered and the reservoir inflow g, , is repre-
sented by simple stochastic auloregressive models
of order g.

(2)

ap = Y (G Gp2 e Gy £ )
where & is & white gaussian noise. Here
{p=ban g, e @i b

The model of the whole dynamic system, com-
posed of the meteorological system, the catchment
and the reservoir, can thus be represented i the
compact vectorial equation:

Xl = Felkp s Erpy) (3

where x, is the state vector, composed by the state
variables in 5, and /. Because of climate periodic-
ity, the function f,{,,)is periodic of period T
equal 10 one year.
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During the system evolution, the stale transition
from x, 10 x4, ©an produce an instantaneous Cosi,
expressing the lack of fulfiflment of management
objcctives, computed as the weighted sum of the
costs associated with the & objectives:

koo ;
gi= Lw'gl @
j=3
where w is the weight of the j-th chjective, Also
the step costs are periodic with period T

We define as policy the infinite
p = {mg,my,...} of periodic functions of period T
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where:

u, =mlx,) {5}
The optimal control problem is to find the policy
that minimises a function of the costs in the future,
over an infinite horizon. Using the Laplace crite-
rion {use of the expected value operator on the
disturhance &), given an initial state xg and a dis-
count rate o for the future costs, the cost function
of a given policy p is defined as:

k
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The optimal control problem is therefore solved
when we find the policy p' which minimises:

J{xp)=minJ{xg, p) (62)
p

subject to:

Xy = Frlanug 8044) (Gb)

& ~ B (& Vxpmy) {6c)

e s wel lxy) &b {6d)

Hy = (X} {6e)

where S,,U/,, D, are the discretised domains of the
state, control and disturbance.

SOLUTION BASED ON STOCHASTIC
DYNAMIC PROGRAMMING

3

The solution of the optimal control problem (6a-
6e) by SDP is based on the evaluation of the opti-
mal cost-to-go, which is defined as the cost that
one would have to pay if the system would be ini-
tially in state x,,, and the system’s future trajectory
would be obtained applying optimal control deci-
sions in every state iransition. We name this cost

4
Heolx)
known for every value of x,,, , the optimal decision

If the optimal cost-to-go would be

my’ (x,)at time ¢ would be easily found minimising



the expected value of the present cost and the dis-
counted optimal cost-to-go:

mf{x;)y=argmin E{g,(x,.u,.&,., )
u, £ (7)

+ a1y (-*rmii )i

The optimal cost-to-go associated with the present
state is therefore given by the following recursive
equation:

H(x)=min Elg,(x, 0,60 )+ a5 (x5 (8
i, £

1 fel

which is known as the Bellman equation and its
solution is the Bellman function.

Under the previous hypotheses, it can be shown
that the Bellman function is a periodic function, of
period T, which can be obtained using the Succes-
sive Approximations Algorithm (SAA) [Bertsekas,
1995] that, proceeding backwards in time from T to
1, solves the recursive equation (8) verifying the
constrainis (6b-6e).

To determine the right hand side of equation (8),
the algorithin, for cach value of x, must explore all
the pessible values of u, and of &. Since this algo-
rithm operaies on a discrete search space, we have
always implicitly assumed that the domains of w. x
and £ were discrete. Actually, it is up to the system
analyut to find a satisfactory discretisation of the
continuous domains of these variables. The choice
of the discretisation is fundamenial since it reflects
on the algorithm complexity which is combinato-
rial in the number of states, controls and in their
discretisations. I we assume to have # states, each
one discretised into N classes, the computational
cost of SDP is proportional to:

N xT (%
where T s the number of time steps.

In other words, if we increase the resolution of the
discretisation, thus enhancing the adherence of our
model to the real world, or if we consider more
controls and states, to describe more complex res-
ervoir networks, it may happen that the time re-
quired to compute a policy becomes excessively
long.

Many metheds have been devised to overcome this
limitation. Georgakakos and Marks [1987] and
Georgakakos [1989] proposed the Extended Linear
CGuadratic Gaussian method, an approach based on
Pontriagyn’s Maximum principle which is net ai-
fected by the dimensionality problem, but requires
the cost function to be a guadratic function., An-
other approach is the one proposed by Nardini et
al. [1994]. They developed a hewristic control
scheme, named Partial Open Loop Feadback Con-
trol, based on the substitution of the oft-line control
problemn with a succession of simpler problems,

which is effective in presence of a detailed de-
scription of the stochastic part of the water system.

In the following, we introduce a new approach
based on neuro-dynamic programming [Berisekas
and Tsiisiklis, 1996} which has the advaniage of
retaining the abifity of SDP to deal with highly
non-linear problems, while reducing the algorithm
complexity thanks to the approximation of the
Beilman functions via ANNs.

4. SOLUTION BASED ON NEURO-
DYMAMIC PROGRAMMING

As previously seen, the main problem with SDP
fies in the dimensions of the search space. If it is
0o big, it is nearly lmpossible to find a solution in
a reasonable time. Unfortunately water systems
with three or more reservoirs are guite common
and each reservoir is modelled with one state vari-
able, It is therefore very easy to come to a poini
where the discretisation grid of the state variables
must be very coarse in order to have a computa-
tionally solvable problem that the resulting policy
is practically unusable,

Another critical factor is the reguirement of mem-
ory space: for a network with three reservoirs, each
state discretised on a grid with 1000 points, under
the simplifying assumption that the reservoir in-
flows are described by gaussian noise {which does
not add to the state dimensions), wne would need
1.4 Terabytes of memory space to store the Bell-
mar function values in single precision only.

A solution to overcome these limitations is {0 use
an approximation H of the Beliman Function
H{) to represent the behaviour of the original
function interpolating from a limited subset §r of

points extracted from discretisation grid $,, so that

x, €8, <5, Since computing a point of H()
is computationally very expensive, in terms of both
CPU time and memory space, reducing the number
of computed points will be extremely beneficial,

In the next sections, first we introduce Artificial
Neural Networks as function approximators, then
we explain how the Bellman function approxima-
tions can be used in an algorithm that differs only
slightly from the original SAA.

4.1, Approximating the Bellman Function

Among various function approximation schemes
we are particularly interested in multilayer feed.
forward networks, as they have been shown to be
universal approximators [Horntk 1989, Kreinovich
19911, This means that an ANN can approximate
any function to any desired degree of accuracy
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provided that a sufficient number of hidden units
are used, and thus we can approximate a highiy
nonlinear map H{x), such as the Bellman function,
where x is a vector, with a feed-forward network
H(x,t%, where 715 the vector of weighis on the
arcs connecting the network layers.

The objective is to find a network structure {num-
ber of hidden layers, number of neurons) so that
the vector ¢ can be efficiently compuied, while
retaining a “good” approximation ability, thus ena-

bling H{x,7) 1o be a compact representation of

Hx).

PU—

Note that the dimension of vector ¢ is equal to r =
sta+23+1 where 5 is the number of neurons and »
the dimension of the state. Thus, to store T ap-
proximations of a Bellman function, we only need
to store 7 values. In the case of the network with
three reservoirs, using a leedforward ANN with 3
neurons in the hidden layer (which are enough to
approximate the Bellman functions in our experi-
mental cases), leads to the requirement of only 216
Kilobytes of memory space, as opposed to the 1.14
Th with traditional SDP.

The improvement is not so remarkable when we
deal with CPU time, since ANNs must be trained.

Input Output
Layer Hidden Layer

Figure 2. A typical feedforward network.

4.2. Training the Bellman Fumction Ap-
proximations

In a feedforward ANN neurons are organised in
tayers: the input layer i directly connected wiih
the inputs, the output layer takes the outputs of the
hidden layer {one, or more) and produces the net-
work output,

In Figure 2 we have represented a network with
three inpuis and three outputs, but the Bellman
function approximators will always have 2 inputs,
where # is the number of state variables, and a sin-
gle output (the cost-to-go value).

The input layer (the empty token in Figure 2 sim-
ply distributes the input vaiues to the hidden layer
weighting the importance of the connections. The

weighted inpuis are thes processed by each node in
the hidden layer thanks lo an acrivation function.
The output of the hidden layer is either passed on
to the next hidden layer or sent to the output nodes
where it is weighted and processed by a (usually)
linear activation function. When alt the activation
functions are linear, aiso in the hidden layers, the
ANN can be reduced to a linear filter and can be
trained using a standard least squares algorithm.
ANN show their ability to approximate highly non-
linzar functions when the activation functions are
non-linear. We have chosen to use a hyperbolic
tengent as activation function. Unfortunately the
least squares algorithm does not work anymore and
therefore the hackpropagation algorithm has been
invenied by {Rumelhart et al. 19861, It minimises
the output error of the network (10}, given by the
sum of squared errors beiween the target 1 and the

network Oﬂtput }'n:
,. i T e
Ef :_zttf}A)'{J)z (10}
2

The error is minimised computing its derivative
with respect to the weighis and then applying the
forward and backward passes of the backpropaga-
tien algorithm o express the weight gradient as a
function of the network inputs for each layer,

in the hackpropagation algorithin the main prob-

lemn is the descent of the weight gradient and te-
search has focused on the development of gradient
descent algorithms which would converge quickly
and avoiding local minima. Most of the time re-
quired training a network is spent in these compu-
tations, where the trade-off is between accuracy
and computational complexity, since most accurate
algorithms require the inversion of the Jacobian
and the Hessian of the weight mairices of consider-
ahie dimensions. Currently we have implemented
ihe Levenberg-Marquardt algorithm [Hagan and
Menhaj, 19947 which has been designed to ap-
proach the speed of second-order methods without
having to compuie the Hessian.

4.3, The MDP Algorithm
Once an approximation archiecture Hix, ¥ of
H(x) has been found, the sub-optimal policy
m, (x,}is given by [Bertsekas and Tsitsikiis,
1956}
1, {x, )= arg min Elg (% 0,60}

o an

*aﬁtﬂi/‘fwi’ﬁrﬂ)] Vx €5, 5,

Comparing equation {11} with (7), 1t appears that

H,, (x.) must be trained using H{;(x.,) as
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target and the vector x,,, as the patiern. We re-

mark that the original Bellman function is not
available, but we can exploit the recursive nature
of the Bellman equation to generate the Bellman
functions needed to wrain their approximations
thanks to the approximate DP formula:

[gr(xr'“r=€f+i}+

{12)

o 4l (v’(wi +Dra )

The left-hand side of (11) is an approximate cost-
to-go function, which can be used to train

H v A0
H, (x5,

obtain ﬁ{_i {x,—). It can be proven formally that
if the approximation architecture is “good enough”,
then H,is a close approximation of the optimal

cost-to-go function H; . Bertsekas and Tsitsiklis
[1996] also show that in some particular cases, for
some values of the discount raze ¢, there is still the
possibility for algorithm divergence. Such a situa-
tion can be avoided by limiting the class of ap-
proximators, but alse by limiting their power and
case of use,

The algorithm is therefore a simple rewriting of the
orginal SAA:

[ritiaiisation. The current algorithm iteration index

<{=

iis set to 0. Initialise H57 () =0 for each siate

value. Train an ANN F[T (xr.P¢) using the dis-

cretisation grid of x,; as the pattern and the iden-

ticatly null function H(‘f{b

{-) as the target.
Main loop. For each algorithm iteration j compute
backwards in time, for r from 7-1 down t0 O, T

functions fffp(-)using equation {11). Ar each
time step, after having oblained Hq f > (), compute

its approximation ﬁfi>(~,ﬁr} training the ANN.
When ¢ = 0, check if an appropriate convergency
criterion, measuring the distance between two
Bellman functions at successive iterations, has
been satisfied. If not, increment the iteration index
Jand go back to the beginning of Step 2 after hav-

ingset H'"(=H70).

5. PRELIMINARY RESULTS

Currently, the algorithm we have presented in this
paper has been applied only to some iest cases to
verify its correct functioning and to get some first
results o understand how to extend its application
to real world cases.

1953

A first test was designed to verify the convergence
of the algorithm and to obtain some data on its
theoretical performance. The test case was a res-
ervoir network with a single reservoir, fed by a
caichment described as white gaussian noise, and
with an agricultural district with a given water de-
mand, constant over the optimisaiion period. One
step of the SDP algorithm, that is, the evaluation of
the right hand side of equation {8) for all the possi-
ble values of x, given the cardinality of U,
card(U) = 7, card(D)y = 10, card(S,) = 17, took
0.97 seconds. One step of the NDP algorithm took
12.41 seconds, of which 0.29 scconds were spent
te evaluate the right hand side of (8) {or a given x,
while in the SDP case, the required time was only
0.058 seconds. Anocther .45 seconds were needed
for each x, to train the ANN which approximated
the Bellman function obtained in the SDP case
with an error less than 107, Note that NDP was
applied using the same discretisation of the stale
space of the SDP case. The tests were performed
on a Pentivm [1 at 350 Mhz, running under Linux.

We then performed some tests 10 understand how
the training time for an ANN varies with the pat-
tern dimension, which depends on the number of
state variables {the dimension of the independent
variable vector x in a function v = fix)) and the
number of points in the discretisation classes of
each component of the vector. These results are
reported in Tabie 1.

Table 1. Training times and approximation errors
measured in the training of the functions y = /a{x)-
sin{x) {1 state variable), ¥y = In{x} — sin{y) {2 vari-
ablesy, v = in(x) — sin{y+z} (3 variables), y =
In(x+y)-sin{z+w) (4 variables).

Pattern size Training  Approximation
time error
number of nurher of (seconds)
state variables  discretisation
classes
i 10 1.3 1.OGE-05
1 24 2.06 LODE-02
i 40 339 i QOE-02
| 80 6.2 {.O0E-03
2 40 5.0 L.OOE02
3 40 8.01 1.00E-03
4 40 Q.89 1.00E0Z

The results show that NDP becomes especially
interesting only when the number of stales in-
creases and the discretisation grid is coarser. We
have therefore applied NDP 1o a test case with two
reservoirs, where the state discretisation of cach
storage was 17 classes. While it was still a scaled-
down test case, the gap between NDP and SDP
was closing down, thanks to the reduction of the
state grid to § discretisation classes in the NDP



case, We measured an average time per iteration of
8 seconds in the SDP case, against 47.36 seconds
for the NDP case. We are currently experimenting
NDP on a real world case, the synthesis of man-
agement policies for the Piave water system. No
results are yet available as we write, since we are
stili setting up the experimental framework, but we
expect to notice a considerable reduction in com-
puting time, given that there are three state vari-
ables, with their discretisation ciasses equal to 102,
41 and 96 points. Sampling those classes, taking
one point out of four, will allow to browse a search
space of 6000 points in the NDP case against the
401472 points of the SDP case.

6. CONCLUSIONS

An approach to the management of reservoir net-
works based on newro-dynamic programming has
been preseated.  Neuro-dynamic programming
atlows to reduce the amount of memory needed to
store the Bellman functions during the solution of
an optimal controi problem. It also reduces the
computation time when the staie space, used as
training pattern, is sampled with a coarser gnd,
while the ANN, which approximates the Bellman
function, still manages to maintain a good ap-
proximation performance.

The first results are promising, bur there is space
for more research, especially on the efficient sam-
pling of the discretised state space, in order to ob-
tain the most efficient approximation of the Bell-
man function,
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